Durability Requirements of Concrete in the Saudi Building Code; Comparison with the ACI 318 Code

Omar Saeed Baghabra Al-Amoudi

Dean, Educational Services Professor, Department of Civil Engineering King Fahd University of Petroleum and Minerals Dhahran, Saudi Arabia

E-mail: amoudi@kfupm.edu.sa

A BUILDING CODE comprises a set of legal, administrative and technical requirements that are concerned with buildings. It is based on scientific and engineering bases with the aim of ensuring acceptable limits of safety and public health, taking into consideration the properties of materials and local natural conditions, the requirements of protection against fire and natural risks such as earthquake, as well as the purpose of using the constructions.

In the absence of local building codes, the construction industry in Saudi Arabia has been adopting standards and codes of practices from several other countries for the design and construction of the infrastructure.

The codes adopted depended on the country of origin of the contractor/consultant. Hence, the constructed facilities exhibited signs of failure much ahead of their designed services life.

There are many causes of these failures!!!

To use Hot Weather Chart:

- 1: Enter with air temperature, move up to relative humidity.
- 2: Move right to concrete temperature.
- 3: Move down to wind velocity.
- 4: Move left, read approximate rate of evaporation.

Chloride and Sulfate Content in Atmospheric Air of

the Arabian Gulf Coast and Pacific Coast

	Dhahran	Long Beach	Morehead City
Cl- µg/m ³ of air	63.7	0.13 (490)*	0.13 (490)*
$SO_4^{}$ $\mu g/m^3$ of air	33.8	0.32 (106)*	0.54 (61)*

*Indicates the ratio of concentration with respect to Dhahran.

Major Ions in Sea Waters in the World

	Concentration (mg/l)									
Major Ions	Black Sea	Marmara Sea	Mediterranean Sea	North Sea	Atlantic Ocean	Baltic Sea	Arabian Gulf	BRE Exposure	Red Sea	
Sodium	4,900	8,100	12,400	12,200	11,100	2,190	20,700	9,740	11,350	
Magnesium	640	1,035	1,500	1,110	1,210	260	2,300	1,200	1,867	
Chloride	9,500	14,390	21,270	16,550	20,000	3,960	36,900	18,200	22,660	
Sulfate	1,362	2,034	2,596	2,220	2,180	580	5,120	2,600	3,050	
TDS	17,085	26,409	38,795	33,060	35,370	7,110	66,650	32,540	40,960	
TDS Ratio [*]	3.90	2.52	1.72	2.02	1.88	9.37	1.00	2.05	1.63	

****Building Research Establishment, England**

*Concentration of total dissolved solids compared to the Arabian Gulf sea water

Distribution of Sabkha Soils in the Arabian Peninsula

World Map Showing Active and Potential Sabkha Locations

Chemical Analysis of Sabkha Brine and Seawater

Ions (g/l)	Al-Jubail Sabkha Brine	KFUPM Beach Seawater
Na ⁺	78.8	20.7
Mg^{++}	10.32	2.30
\mathbf{K}^+	3.06	0.73
Ca ⁺⁺	1.45	0.76
\mathbf{Sr}^{++}	0.029	0.013
Cl [–]	157.2	36.9
Br-	0.49	0.121
(SO ₄)	5.45	5.12
(HCO ₃) ⁻	0.087	0.128
рН	6.9	8.3
Conductivity *	208,000	46,200
*Microsiemens	**Not report	ed

These failures forced the authorities to develop a "national" building code suitable for the local environmental conditions.

A Saudi Building Code National Committee (SBCNC) was formed by the Royal Decree No. 7/B/3230 dated June 12th, 2000 so as to prepare SBC, which when approved, shall be binding for all public and private sectors.

The **SBCNC** reviewed a number of the regional and international references and codes in addition to studying the standards, building systems and plans of the governmental departments and authorities including the International Code Council (ICC) issued in USA, the European Code and Arab Codes.

The National Committee was divided into several sub-committees to address the areas related to construction, such as concrete, steel, loads, inspection, soil, etc. Each sub-committee was charged with the preparation of the relevant parts in (SBC).

Concrete Sub-Committee: SBC 304

ACI 318, being the most widely used standard for concrete structures, was selected to be part of the SBC. The concrete sub-committee was charged to make the suitable modifications to suit to the environmental conditions of Saudi Arabia.

Accordingly, several changes were made to ACI 318. However, the major revisions were made to the durability requirements and hot weather requirements (Chapter 4 and Section 5.13, respectively). These changes were based on the local experience and research data developed over last 30 years.

Modifications to ACI 318 in SBC

Due to the space limitations, the changes made in the chapters related to **DURABILITY** (Chapter 4) and HOT WEATHER (Section 5.13) are only addressed in this presentation.

Modifications to Chapter 3 (MATERIALS)

The changes made to Chapter 3 of ACI 318 for adoption in SBC are detailed below.

Code/ Comm	Statement in ACI	Statement in SBC
R3.2.1 a		The C ₃ A content of cement
		intended for corrosion resistance should not be less
		than 8 percent.

Code
3.4.1Water used in mixing
concrete shall be cleanWater used in mixing
or curing concreteand free from injurious
amounts of oils, acids,
alkalis,shall be clean and free
from injurious amountsof
salts,oils, acids, alkalis,
salts,

Modifications to Chapter 4

(DURABILITY REQUIREMENTS)

In view of the severity of the geomorphic and climatic exposure conditions in the Arabian Peninsula, many changes were made to this chapter. These are detailed as fallows:

Comm.	Maximum water- cementitious materials ratios of 0.40 to 0.50	Concrete exposed to sulfate- bearing soils or groundwater, seawater, or for preventing
	that may be required for concretes exposed to sulfate-bearing soils or	or salt weathering should be designed for maximum water- cementitious materials ratio,
	groundwaters, or for preventing corrosion of rainforcement will	minimumcementitiousmaterialscontentappropriatetypeofcement.
	typically be equivalent to requiring an f_c of about 35 to 28 MPa, respectively.	Maximum water-cementitious materials ratios of 0.40 to 0.50 that may be required for concretes exposed to sulfate- bearing soils or groundwaters, or for proventing corresion of
		reinforcement will typically be equivalent to requiring an f_c of about 35 to 28 MPa, respectively.

R4.1.1

For concrete exposed to deicing chemicals the quantity of fly ash, other pozzolans, silica fume, slag, or blended cements used in the concrete is subject to the percentage limits in 4.2.3.

Deleted (The same in Code 4.1.1)

4.2–Freezing and thawing exposures 4.2–Freezing and thawing exposures

Code 4.2.1 Normalweight and lightweight concrete exposed to freezing and thawing or deicing chemicals shall be air-entrained with air content indicated in Table 4.2.1

Not applicable in the Kingdom. In the Commentary, it is mentioned: Freezethaw conditions are rarely observed in the climatic conditions of the Kingdom.

4.3 – Sulfate Exposures

Code		Concrete to b	be exposed to sulfate-
4.3.1		bearing groun	ndwater or soils shall
		conform to	the requirements of
		Table 4.3.1	or shall be concrete
		prepared wi	ith a cement that
	Samo avcont	provides sulfa	ate resistance and that
	Same except	has a	maximum water-
		cementitious	materials ratio,
		minimum ce	mentitious materials
		content	and minimum
		compressive	strength from Table
		4.3.1.	

REQUIREMENTS FOR CONCRETE EXPOSED TO SULFATE-BEARING SOILS OR WATER (Table 4.3.1 in ACI 318).

Sulfate exposure	Water soluble sulfate (SO ₄) in soil, percent by weight	Sulfate (SO ₄) in water, ppm	Cement type	Maximum water- cementitious materials ratio, by weight, normal weight aggregate concrete	Minimum f_c , normal- weight and lightweight aggregate concrete, MPa
Negligible	$0.00 \le { m SO}_4 < 0.10$	$0 \le SO_4 < 150$	-	-	-
Moderate ⁺	$0.1 \le \mathrm{SO}_4 < 0.20$	150 ≤ SO ₄ < 1500	II, IP(MS), P(MS), I(PM)(MS), I(SM)(MS)	0.50	28
Severe	$\begin{array}{c} 0.20 \leq \mathrm{SO}_4 \leq \\ 2.00 \end{array}$	$1500 \le SO_4 \le 10,000$	V	0.45	30
Very severe	$SO_4 > 2.00$	SO ₄ > 10,000	V plus pozzolan ⁺⁺	0.45	30

* When both Table 4.3.1 and Table 4.2.2 are considered, the lowest applicable maximum w/cm and highest applicable minimum f_c shall be used.

+ seawater.

⁺⁺ Pozzolan that has been determined by test or service record to improve sulfate resistance when used in concrete containing Type V cement.

REQUIREMENTS FOR CONCRETE EXPOSED TO SULFATE-BEARING SOILS OR WATER (Table 4.3.1 in SBC 304).

Sulfate exposure	Water soluble sulfate (SO ₄) in soil, percent by weight	Sulfate (SO ₄) in water, ppm	Cement type	Maximum water- cementitious materials ratio, by weight,	Minimum Cementitious Materials content, kg/m ³	Minimum f _c ' MPa c
Negligible	$0.00 \le SO_4 \le 0.10$	$0 \le SO_4 \le 150$		-	-	-
Moderate ⁺	$0.1 \le SO_4 \le 0.20$	$\begin{array}{c} 150 \leq \mathrm{SO}_4 \leq \\ 500 \end{array}$	Π	0.50	330	28
Severe	$0.20 \le SO_4 \le 2.00$	$1500 \le SO_4 \le 10,000$	V	0.45	350	30
Very severe+	$SO_4 > 2.00$	SO ₄ > 10,000	V plus pozzolan ⁺⁺	0.45	350	30

If sulfate ions are associated with magnesium ions, supplementary protection, such as application of a barrier coating, is required.

++ Pozzolan that conforms to relevant ASTM standards or that is shown to improve the sulfate resistance by service records should only be used.

+ Note: The moderate exposure does not include seawater.

Concrete exposed to injurious concentrations of sulfates from soil or groundwater should be made with a sulfate-resisting cement. Table 4.3.1 lists the appropriate types of cement and the maximum water-cementitious materials ratios, minimum cementitious materials contents and minimum compressive strength for various exposure conditions. In selecting a cement for sulfate resistance, the principal consideration is its tricalcium aluminate (C_3A) content. For moderate exposures, Type II cement is limited to a maximum C_3A content of 8.0 percent under ASTM C 150. For severe exposures, Type V cement with a maximum C_3A content of 5 percent is specified. Type V cement may be used when Type II cement is not available.

4.4 - Corrosion Protection of Reinforcement

Code	Same	If concrete with reinforcement will be
4.4.2	except	exposed to chlorides from (deicing
		chemicals, salt, salt water, brackish
		water) soil, groundwater, seawater, or
		spray from these sources, requirements
		of Table 4.4.2 (Table 4.2.2 in ACI 318)
		for water-cementitious materials ratio,
		cementitious materials content, cement
		type and concrete strength, and the
		minimum cover over reinforcing steel
		requirements of 7.7 shall be satisfied.
		See 18.16 for unbonded tendons.

REQUIREMENTS FOR CONCRETE EXPOSED TO CHLORIDE-BEARING SOIL OR WATER (Table 4.4.2 in SBC 304).

Chloride exposure	Water soluble chloride (CI) in soil, percent by weight	Water soluble chloride (CI) in water, ppm	Cement type	Maximum water- cementitious materials ratio,	Minimum cementitious materials content, kg/m ³	Minimum f _c ' MPa
Negligible	Up to 0.05	Up to 500				
Moderate	0.05 to 0.1	500 to 2,000		0.50	330	28
Severe	0.1 to 0.5	2,000 to 10,000	I	0.45	350	30
Very severe	More than 0.5	More than 10,000	I+ pozzolan+	0.40	370	35

⁺ Pozzolan that conforms to relevant standards shall only be used.

R4.4.2; ____ The requirements for protection 3rd para. of concrete against carbonation are not provided as it is expected that the use of quality concrete and adequate cover over reinforcing steel, as specified in the Code, will minimize this problem.

Code 4.4.3	 For the permanently submerged,
	tidal, splash and spray zones of
	marine structures, the requirements
	for very severe exposure in Table 4.4.2
	shall be satisfied.

Code $4 4 4$	 For concrete structures near to or o						: on	
T.T.T	the co	the coast and exposed to airborne sal						
	but	not	in	direct	cont	act v	with	
	seawa	iter,	the	require	nents	for sev	vere	
	expos	ure	in	Table	4.4.2	shall	be	
	satisfi	ed.						

Code 4.4.5	 For superstructures in coastal areas an			
	not directly exposed to airborne salt, the	e		
	requirements for moderate exposure in	n		
	Table 4.4.2 shall be satisfied.			

R4.4.5	 In the coastal areas, such as in Jeddah,			
	Yanbu, Dammam, Jizan, and others, the			
	substructures are exposed to chloride-			
	and sulfate-bearing soil and/or			
	groundwater. In such situations, the			
	requirements of 4.5 shall be considered.			

4.5 - Sulfate plus Chloride Exposures

Code -- If concrete is exposed to both 4.5.1 -- chlorides and sulfates, the lowest applicable maximum watercementitious materials ratio and highest minimum cementitious materials content of Tables 4.3.1 and 4.4.2 shall be selected. The corresponding highest $f_{\rm c}$ shall be the governing value for quality control purposes. The cement type shall be the one required by **Table 4.4.2.**

R4.5.1 Since reinforcement corrosion is the major form of concrete deterioration, in a chloride-sulfate environment, as sulfate ions do not penetrate deeper into the concrete cover, it is suggested to use the cement type specified in Table 4.4.2, rather than that dictated by the severity of the exposure conditions.

4.6 - Sabkha Exposures

Code	 Concrete structures exposed to
4.6.1	 sabkha shall meet the requirements for
	very severe exposure in Table 4.4.2,
	except that the water-cementitious
	materials ratio shall not be more
	than 0.35. In addition, the exposed
	surfaces shall be protected by
	appropriate means, such as tanking
	or epoxy-based coating.

4.7 - Salt Weathering

Code

4.7.1

Concrete structures amenable
 to salt weathering shall be
 protected by applying an
 appropriate barrier coating.

Concrete exposed to splash in a ____ marine environment and soil with shallow groundwater table or water from irrigation is susceptible to deterioration due to salt weathering in the hot and arid environment of the Kingdom. In addition to utilizing quality concrete, it may be necessary to provide additional protective measures, such as the application of an appropriate barrier coating

R4.7.1

Cont'd:	 In	marine	e stru	ictures,	the
R4.7.1	prot	ection s	hould b	e provide	d in
	the	splash	zone.	Tanking	or
	app	lication	of	a bar	rier
	coat	ing in	portion	as expose	d to
	soil	is n	ecessai	ry for	the
	subs	structu	res.		

Modifications to Chapter 5

(CONCRETE QUALITY, MIXING, AND PLACING)*

The modifications made to Chapter 5 of ACI 318 for adoption in SBC are detailed below. Due to the uniqueness of the climatic conditions of the Arabian Peninsula, significant additions have been made to Section 5.13 (Hot Weather Requirements) and the Section on Cold Weather Requirements has been deleted.

* Many changes in the units have been made and not reported herewith.

Code / Comm.	Statement in ACI	Statement in SBC
Code	Concrete shall satisfy the	Concrete shall satisfy the
5.1.1	durability criteria of	durability criteria of Chapter
	Chapter 4. For concrete	4. For concrete designed and
	designed and constructed in	constructed in accordance
	accordance with the code,	with the code, f_c ' shall not
	f_c' shall not be less than	be less than 20 MPa
	17 MPa.	(cylinder standard)

Code
5.1.2Requirementsfor f_c' Requirementsfor f_c' shall be based on testsshall be based on testsshall be based on testsof cylinders made andof150 × 300 mmtested as prescribed incylinders made and5.6.3.tested as prescribed in5.6.3.5.6.3.

R5.1.2----Cubic specimens (150 x 150 x 150
mm) in accordance with SASO 79
may be used in evaluating the
compressive strength, using the
following correction factor:
 $f_c' = k (f_{cubic})$ where k = 0.8

Code Comm.	5.10 - Depositing	5.10 - Placing
Code 5.10.4	Retempered concrete or concrete that has	Retemperingofconcretewithwater
	beenremixedafterinitialsetshallnot	or concrete that has been remixed after
	used unless approved by the engineer.	initial set shall not be allowed.

Code	5.12 Cold weather requirements	5.12 Cold weather requirements*
Code	5.13 Hot weather requirements	5.13 Hot weather requirements

 Codes 5.12.1, 5.12.2 and 5.12.3 as well as R5.12 have been deleted from SBC 304 (Not applicable in the Kingdom)

Recommendations for hot Hot weather is any R5.13 weather concreting are given combination of high in detail in "Hot Weather ambient temperature, high Concreting" reported by concrete temperature; low AC1 Committee 305^{5.15} relative humidity; wind (Defines the hot weather speed; and solar radiation factors that effect concrete that tends to impair the properties and construction quality of fresh or practices and recommends hardened concrete. measures to eliminate or minimize the undesirable effects.)

Code	 The temperature of fresh concrete
5.13.2	shall be kept as low as practicable
	but shall not exceed 35°C at the
	time of placing.

R5.13.2	 Local experience has shown that
	when reasonable precautions are
	employed by the batching plants,
	concrete with a temperature of
	less than 35° C can be delivered
	to jobsite ^{5.16} .

CodeThe use of chemical admixtures,5.13.3such as retarders and watersuch as retarders of chemical admixtures,reducers, shall be considered tooffset the negative effects of hotweather.

Unless otherwise required, concrete shall be proportioned for a slump of not less than 75 mm at the time of placing to permit prompt placement and effective consolidation in the form.

Code

5.13.4

Concreting shall be done at the lowest ambient temperature, preferably early in the morning or late in the afternoon.

Delivery of concrete to the job site shall be scheduled so that it will be placed promptly on arrival.

Cont'd:	 The construction activity shall be
Code	carefully planned to avoid cold
5.13.4	ioints. If construction joints
	become necessary they shall be
	become necessary, they shall be
	made in accordance with Section
	6.4 of this code.

Code 5.13.5	 Retempering of concrete by the
	addition of water to compensate for loss
	of workability shall not be allowed.

Code	 All necessary precautions shall be taken	
5.15.0	to prevent plastic shrinkage cracking.	
	In particular, precautions should be	
	taken during placing of concrete to	
	avoid excessive evaporation of mix	
	water.	

Code	 Curing of concrete shall commence as
5.13.7	soon as the surfaces are finished and it shall
	continue for at least the first seven days.
	Moist curing for the entire curing period is
	preferred. However, if moist curing cannot
	be continued beyond three days, concrete
	should be protected from drying with curing
	paper, heat-reflecting plastic sheets, or
	membrane-forming curing compounds.

Code	 Tests on fresh concrete and specimen
5.13.8	preparation shall be strictly in accordance
	with the relevant ASTM standards by
	qualified technicians.
	 Air temperature, concrete temperature,
	and general weather conditions at the
	time of concrete placement shall be
	recorded.

Cont'd:	 Inspection of concrete shall be
Code 5.13.8	detailed and emphasized in the
	project specifications to ascertain
	that adequate precautions are taken
	to minimize the adverse effects of
	hot weather on concrete properties.

CONCLUDING REMARKS

SBC has been developed to cater to the Saudi geomorphic and climatic exposure conditions. After a thorough survey of all international codes of practices, the ACI 318 was selected for the Concrete Subcommittee.

CONCLUDING REMARKS (cont'd)

The Concrete Sub-Committee of SBCNC critically evaluated the requirements of ACI 318 along with the data developed in Saudi Arabia over the last 30 years of through research and field experience.

CONCLUDING REMARKS (cont'd)

Major modifications for the severe exposures, such as sabkha and those leading to severe salt weathering, have been incorporated in this chapter. The other major revision, was in the Section dealing with hot weather concreting.

CONCLUDING REMARKS (cont'd)

The authors, on behalf of SBCNC, would welcome comments or suggestions to further improve the SBC.

For more details about the Saudi Building Code, please look at:

http://www.sbc.gov.sa

Thank You